superior performance. powerful technology.

HTS Conductor Forum –
Representative Manufacturer’s Point of View
DW Hazelton
Wednesday, September 18, 2013 ■ 3A-SS-01 EUCAS-2013, Genova, Italy
Engineering progress drives 2G HTS adoption

<table>
<thead>
<tr>
<th>Feature</th>
<th>Approach</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust wire design</td>
<td>“Hastelloy” based substrate supporting structure</td>
<td>Tensile strength, Peel strength, Splicing stress</td>
</tr>
<tr>
<td>Mechanical strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-field performance</td>
<td>Flux pinning with engineered nanostructure</td>
<td>Enhanced Ic at low (4.2-40K) temp. and under perpendicular field components (2-15T)</td>
</tr>
<tr>
<td>Critical current (Ic) under magnetic field</td>
<td>Consistent & uniform process</td>
<td></td>
</tr>
<tr>
<td>Alternative constructs</td>
<td>Cable constructs, Bonded conductor designs, Alternative materials</td>
<td>Higher operating currents, Stronger conductors with application specific properties</td>
</tr>
<tr>
<td>Higher operating currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special application requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wire performance critical to practical applications

- $I_c(B, T, \theta)$
 - Temperature, magnetic field and field orientation dependence of I_c
 - Minimum I_c at operating condition
- Mechanical properties (electromechanical performance)
 - Workability for fabrication into various devices
 - Irreversible stress or strain limits under various stress condition, in terms of I_c
- Uniformity along length (I_c and other attributes)
- Thermal properties (thermal expansion coefficient and thermal conductivity)
- Quench stability (NZPV and MQE)
- Insulation (material and method)
- Splice
 - Resistance (resistivity)
 - Mechanical strength (tensile and bending)

Standards for 2G HTS wire property testing are under development
SuperPower’s ReBCO superconductor with artificial pinning structure provides a solution for demanding applications

- Hastelloy® C276 substrate
 - high strength
 - high resistance
 - non-magnetic
- Buffer layers with IBAD-MgO
 - Diffusion barrier to metal substrate
 - Ideal lattice matching from substrate through ReBCO
- MOCVD grown ReBCO layer with BZO nanorods
 - Flux pinning sites for high in-field \(I_c \)
- Silver and copper stabilization
$I_c(B,T,\Phi)$ characterization is critical to understanding the impacts of processing on operational performance.

Measurements made at the University of Houston

- Lift factor, $I_c(B,T)/I_c(sf, 77K)$, particularly a full matrix of $I_c(B, T, \Phi)$ is in high demand.
- Frequently sought by coil/magnet design engineer, for various applications.
- Used to calculate local I_{op}/I_c ratio inside coil body, and design quench protection.
I_c uniformity along length (TapeStar, transport)

- Magnetic, non-contact measurement
- High spacial resolution, high speed, reel-to-reel
- Monitoring I_c at multiple production points after MOCVD
- Capability of quantitative 2D uniformity inspection
Engineering new wire innovations to address customer requests and meet application requirements

• Additional wire insulation methods
 – Today: Kapton®/Polyimide wrapped
 – Other options under development: thinner profile, better coverage

• Additional wire architectures under development
 – Higher current carrying capability
 • Multi-layer combinations
 • Cable on Round Core (CORC)
 • Roebel cable
 – Custom attributes
 • FCL – normal state resistance feature

ROEBEL cable made by KIT with SuperPower® 2G HTS Wire

Courtesy: Advanced Conductor Technologies
Capability for bonded conductors being developed [higher amperage, specialty applications (FCL)]

- Bonded conductors offer the ability to achieve higher operating currents
 - LV windings of FCL transformer
 - HEP applications
 - High current bus applications
- Bonded conductors offer higher strength
 - FCL transformer fault currents
 - High field HEP applications with high force loadings
- Bonded conductors offer the ability to tailor application specific operating requirements, i.e. normal state resistance for a FCL transformer
Summary

• SuperPower 2G HTS conductor offers a flexible architecture to address the broad range of demanding applications requirements.

• SuperPower is engaging major resources in improving its manufacturing capabilities to deliver a consistent, reliable, high quality 2G HTS product
 – Improved consistency of lift factor
 – Improved piece length
 – Improved current density
 – Improved uniformity

• Alternative conductor configurations are being developed to address customer demand