
2G HTS Wire and Device Demonstration Programs at SuperPower: Recent Progress and Continuous Improvement Programs

Traute F. Lehner, Sr. Director of Marketing & Govt. Affairs

16th US-Japan Workshop on Advanced Superconductors
University of Dayton Research Institute
July 10-12, 2013 Dayton, OH - USA
Topics

- Evolution of SuperPower’s approach to the market
- Listening to the Voice of the Customer
- Technology and manufacturing program
- Current status and continuous improvement activities
- Summary
SuperPower’s evolution as 2G HTS industry leader

• 2000-2006: The Intermagnetics Years
 – 2G HTS technology development
 – Production scale-up
 – Demonstration projects – energy focus

• 2006-2012: The Philips Years
 – Transition from scale-up to commercialization
 – Exploration of wide range of commercial markets
 – Buildup of broad customer base

• From 2012 onward: The Furukawa Years
 – Continuous manufacturing improvements over established baseline capabilities … to address market needs
 – Steady expansion of production to meet market requirements
 – Focus on long-term sustainability in a slowly evolving market
SuperPower benefits from Furukawa’s strengths

Three core materials across five business segments

Metals
Photonics
Telecommunications
Light Metals
Energy/Industrial Products

CORPORATE PHILOSOPHY
Drawing on more than a century of expertise in the development and fabrication of advanced materials, we will contribute to the realization of a sustainable society through continuous technological innovation.
The Voice of the Customer provides our roadmap

Each application has its own unique requirements:

- **Performance**: critical current, in-field performance, engineering current density, low ac losses, piece length
- **Mechanical properties**: wire strength, joint options
- **Finishing options**: insulation, stabilization, multiple geometries
- **Quality**: uniformity, delivery time, price optimization, reliability
SuperPower® 2G HTS wire: Thin film deposition on robust, flexible substrate

- Routine, high quality production established – fast, high throughput, automated, reel-to-reel
We are meeting today’s needs

- **High Ic**: 100A standard; 110-140+ A premium (4 mm width) (77K, 0T)
- **Uniform Ic** over long lengths: STDEV +/- 10%
 - Good, repeatable bandwidth
 - Good 2D uniformity (across width)
- **High engineering current density** (very thin substrate and stabilizers): 250-350A/mm²
- **Chemistry**: two formulations
 - AP (Advanced Pinning) (enhanced performance for in-magnetic field applications)
 - CF (Cable Formulation) (77K, low fields) (cable, FCL, transformer)
- **Flexible, robust architecture**
 - Multiple widths and thicknesses (substrate, stabilizers)
- **Superior mechanical properties**
 - Yield strength 550 MPa and higher with superalloy-based coated conductors
 - Excellent joints and solderability
- **Long piece lengths**: routine 50-300 m lengths
 - Up to 1 km with high quality splices
And working on further advancements with Continuous Improvement Programs …

- **Higher** critical current
 - Increase in standard Ic
 - Increase in in-field performance
- **Longer** piece lengths
 - Increase in single piece lengths
 - Improvement in splicing techniques
- **Tighter** uniformity bandwidth
- **Stronger** mechanical wire properties
- **Faster** delivery time
 - Reducing production cycle time
 - Larger in-stock inventory (Quick Ship)
- **Better** price-performance ratio
Quality drives success: major focus on product quality and performance certification

- Additional Quality Assurance initiatives introduced to ensure product quality and production improvements:
 - Kaizen, Six Sigma (continuous improvement plans)
 - Lean manufacturing (5S program)
 - SOP, TPM, SPC, Documentation/Measurement

- Performance certification at device operating conditions
 - Expansion of in-field performance testing
 - In-house testing systems in place (up to 9T, 4.2K)
 - Additional system under development to allow for production qualification (77-30K, 0-2T, angular dependence)
 - Working with partners to expand testing in multiple field and temperature ranges, verification
 - Long-term reliability, consistency and uniformity of product
Engineering new wire innovations to address customer requests and meet application requirements

• Additional wire insulation methods
 – Today: Kapton®/Polyimide wrapped
 – Other options under development: thinner profile, better coverage

• Additional wire architectures under development
 – Higher current carrying capability
 • Multi-layer combinations, i.e. EuCARD
 • Cable on Round Core (CORC)
 • ROEBEL cable
 • Plus others …
Coil programs support customer activities and build expertise

- New coil winding approaches examined and under implementation
 - Coil modeling
 - 2G winding process development
 - Various coil types: solenoid, racetrack, pancake, and layer wound
 - Various coil testing techniques
 - Alternative insulation investigations
- Investigation of wire performance under stress
 - Tensile and compression strength testing
 - C-axis tensile/peel strength testing
 - Conductor characterization (Ic vs. stress)
- Engineering services to assist customer efforts
In-field performance – the key to coil applications

$I_c(B,T)/I_c(\text{self field, } 77\,\text{K})$ defined as **Lift Factor**
Applications development programs support wire manufacturing activities

- **SFCL Transformer**: new wire architecture, FCL functionality, low ac loss configuration
- **ARPA-E SMES**: high current density for high field coil … also aimed at price improvement
- **Army SMES** for tactical micro-grid: adaptation of coil from utility medium voltage interface to lower voltage military performance requirement
- **ARPA-E REACT Wind turbine generator**: 4X improvement in current density under operating conditions … directly leading to price improvement
DOE Smart Grid SFCL transformer demonstration

• Funding: DOE Smart Grid Demo $10.7M (Total Program = $21.5M)
• Partners:
 – SuperPower (project lead)
 – SPX | Waukesha Electric
 – University of Houston
 – Southern California Edison (host utility)
• Project objective:
 – Design, develop, manufacture and test SmartGrid-compatible SFCL Transformer
 • 28 MVA 3-phase FCL Medium Power Utility Transformer (69 kV / 12.47 kV class)
 • Testing on So. California Edison Smart Grid site in Irvine, CA – plan min 1 year of grid operation
 – First transformer to use significant amounts of 2G HTS wire (14km/12mm)
• Relevance:
 – Smaller footprint than conventional transformers, enabling existing substations to increase distribution capability without expanding into limited or expensive real estate

• Benefits
 – Greater efficiency
 – Smaller, lighter, potentially quieter
 – Safety: no oil for cooling
 – Can run indefinitely above rated power without affecting device life
• Add FCL feature …
 – Compatibility with Smart Grid requirements
 – Incorporation of FCL feature to rapidly detect and limit surges at high power levels that can be handled by downstream equipment
 – 30-50% reduction of prospective fault current
 – Low ac loss conductor development at UH
ARPA-E SMES Development

- Funding: DOE ARPA-E $4.2 million (Total program = $5.25 million)
- Project timeline: 2011-2013
- Partners:
 - ABB, Inc.: project lead, power electronics
 - Brookhaven National Lab: SMES coil
 - SuperPower Inc.: 2G HTS wire, coil development
 - University of Houston, TcSUH: manufacturing improvements for wire cost reductions
- Objective: proof-of-concept of modular, scalable SMES system by integrating an advanced power conversion concept with superconducting magnet coil
 - 20 kW UHF SMES device with 2.5 MJ class capacity
 - Field over 20 T at 4.2K
 - 2G HTS wire with high critical currents (~ 800 A) to drive down price/performance
 - Capable of flexible connection to medium voltage distribution networks at 15-36 kV
- Relevance:
 - High power and high energy storage in a compact device with cost advantages in material and system
 - Modular units for both long (hours) and short term (seconds) storage requirements to help load leveling on the grid being fed by variable renewable sources
Army Research Lab – SMES for Micro-Grid

- **Funding:** US Army Research Laboratory
 $4.2M of $7M funded to date
- **Project timeline:** 3 yrs., Q4/2012 – Q3/2015
- **Partners:**
 - **SuperPower Inc:** project lead, 2G HTS wire, coil development
 - **Brookhaven National Lab:** SMES coil
 - **MTech Labs:** power electronics
 - **University of Houston, TcSUH:** low ac loss material development

- **Objective:** Build upon the developments achieved in the ARPA E-SMES project with HTS superconductors and adapt those developments to the Army’s tactical Microgrid application (lower voltage)
 - Model, design and fabricate a 2.5MJ tactical Microgrid SMES
 - Modify 2G HTS MJ ARPA E-SMES coil to meet the tactical Microgrid requirements
 - Develop robust quench protection and switching components
 - Investigate methods to reduce ac losses through superconductor tape design

- **Relevance:**
 - High power and high energy storage in a compact device enables a power solution for remote areas.
 - Build on ARPA E investment in SMES technology to provide a practical application in real world environments
ARPA-E REACT Program

(Rare Earth Alternatives for Critical Technologies)

- Develop high performance, low-cost superconducting wires and coils for **wind turbine generators** that are lighter, more powerful, and more efficient – and will provide an alternative to RE-based permanent magnets

- Partnering between university, institution, and companies
 - University of Houston – project lead, further improvement in in-field/low temperature wire performance
 - SuperPower – wire manufacturer
 - NREL (National Renewable Energy Laboratory) – impact evaluation of enhanced s/c wire on overall system performance
 - Tai Yang Research Company – coil fabrication and test
 - TECO Westinghouse Motor Company – device design

- **Goal:** four-fold improvement in lift factor (2.5T, 30K)

- **Project started in January 2012**

- **Program period:** 3 years

- **Budget:** $3.1 million
Technology development programs focused on next level of product improvements …

- Increase base I_c
- Increase lift factor
- Increase wire strength
- Reduce ac losses

Structured, well-timed process for transfer of these advancements into production

68% improvement in wire performance at wind generator operating condition of 30 K, 2.5 T
Summary

• SuperPower’s wire production is stable and sufficient to meet today’s market needs
• BUT: market requirements are become more demanding
• Manufacturing initiatives are directed toward continuous improvements to meet application requirements and to speed the adoption rate
• Further technology development efforts are focused on meeting demands of key applications

• For more information: www.superpower-inc.com
tlehner@superpower-inc.com
Acknowledgements

- US Department of Energy
- US Army Research Lab

- Colleagues at SuperPower:
 - Toru Fukushima, Ph.D.
 - Drew Hazelton
 - Yifei Zhang, Ph.D.
 - Hisaki Sakamoto, Ross McClure, Allan Knoll
- V. Selvamanickam at U. Houston