superior performance. powerful technology.

Key performance of 2G HTS wire for coil applications

Yifei Zhang, Ph.D.

Wednesday, May 29, 2013

- Workshop - Electrical Machines with HTS Technology for Wind Power Applications
- Dongfang Electric Corporation, Chengdu, Sichuan, China
Acknowledgements

• Special thanks to my colleagues at SuperPower for their contributions
 – D. W. Hazelton
 – H. Song
 – P. Brownsey
 – T. Fukushima
 – A. R. Knoll
 – L. V. Hope
 – H. Sakamoto
 – R. B. McClure
Outline

• SuperPower Inc. - company profile
• Wire architecture, manufacturing, and specification
• Wire performance - important to coil applications
 – in-field performance
 – mechanical strength
 – splice resistance and strength
• Making reliable coils
• Summary
SuperPower Inc. formed in 2000 to develop and produce 2G HTS wire

- Intermagnetics (IGC) spins off from GE in 1971
 - Supplying LTS magnets for highly successful MRI business (Philips Electronics and others)
- Early focus on HTS begins at IGC in 1987
 - Development of first generation (1G) HTS (BSCCO) wire
 - Early device demonstrations (transformer, fault current controller) with 1G wire
 - Realization of superiority of 2G HTS materials – first to transition
- Multiple factors predict enormous market potential for 2G HTS-based electric power systems: increasing demand, aging infrastructure, deregulation
2006-2012 The Philips years

• IGC acquired by Philips Electronics in 2006 for MRI magnet business
• Six years to build value – leading supplier of 2G HTS wire
 – Buildup of strong R&D, manufacturing, and marketing team
 – R&D focusing on wire performance improvements
 – Strategic Research Agreement with the Univ. of Houston – TcSUH
 – Transition to pilot-scale manufacturing
• Market and customer oriented
 – Exploration of wide range of commercial markets – energy focus and beyond
 – Buildup of broad global customer base
A new strategic owner steps up

- Furukawa Electric acquired SuperPower in February 2012
 - Adding the world leader in 2G HTS to Furukawa’s long history in LTS
 - Focus on long-term sustainability in an evolving market
 - Concentration on continuous manufacturing improvements over established baseline capabilities
 - Steady expansion of production capacity to meet market requirements
Architecture of SuperPower’s 2G HTS wire

- Substrate (Hastelloy® C-276) provides mechanical strength, electropolished surface for subsequent layer growth
- IBAD-MgO provides template for growing epitaxial buffer layers
- Buffer layers provide:
 - Diffusion barrier between substrate and REBCO
 - Lattice match with REBCO
- REBCO layer – optimized composition with nanosized BZO & RE$_2$O$_3$ flux pinning sites for high in-field Ic at all field orientations
- Ag layer – provides good current transfer to HTS layer and facilitates oxygen diffusion during oxygenation annealing
- Cu layer – provides stabilization (parallel path for current) during operation and quench conditions
2G HTS wire manufacturing at SuperPower

- Automated processes, in-situ material characterization
- Reel-to-reel systems
- High throughput, fast processes
- Modular and scalable systems

Substrate electro-polishing IBAD-MgO REBCO layer MOCVD
2G HTS wire manufacturing at SuperPower

• Quality assurance throughout processes
• Rigorous testing, product certification with each delivery
• Continuous improvement in processing and wire performance
• Technical support to customers
2G HTS standard wire specifications

<table>
<thead>
<tr>
<th>Spec</th>
<th>SC3050</th>
<th>SF4050</th>
<th>SC4050</th>
<th>SF6050</th>
<th>SC6050</th>
<th>SF12050</th>
<th>SC12050</th>
<th>SF12100</th>
<th>Unit</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Ic</td>
<td>75</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>amp</td>
<td>measured by continuous direct current</td>
</tr>
<tr>
<td>Widths</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Total Wire Thickness</td>
<td>0.1</td>
<td>0.055</td>
<td>0.1</td>
<td>0.055</td>
<td>0.1</td>
<td>0.055</td>
<td>0.1</td>
<td>0.105</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Standard Copper Stabilizer Thickness</td>
<td>0.04</td>
<td>n/a</td>
<td>0.04</td>
<td>n/a</td>
<td>0.04</td>
<td>n/a</td>
<td>0.04</td>
<td>n/a</td>
<td>mm</td>
<td>surround stabilizer with rounded corners</td>
</tr>
<tr>
<td>Critical Tensile Stress</td>
<td>> 550</td>
<td>MPa</td>
<td>at 77K</td>
</tr>
<tr>
<td>Critical Axial Tensile Strain</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.4%</td>
<td>at 77K</td>
<td></td>
</tr>
<tr>
<td>Critical Bend Diameter in Tension</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>25</td>
<td>mm</td>
<td>at room temperature</td>
</tr>
<tr>
<td>Critical Bend Diameter in Compression</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>25</td>
<td>mm</td>
<td>at room temperature</td>
</tr>
</tbody>
</table>

- **“SCS”** – Surrounded Copper Stabilizer’; **“SF”** – Stabilizer Free
- Two chemical formulations:
 - **AP** (Advanced Pinning) – for enhanced in-field performance for coil applications in motors, generators, SMES, high-field magnets, etc.
 - **CF** (Cable Formulation) – for cable and SFCL
- Variations in width, substrate thickness, stabilizer thickness, and insulation
 - Insulated wire: polyimide tape wrapped - 30% overlap or butt-wrap
2G HTS wire – a broad range of applications

- Much larger application potential lies beyond the capability of LTS wires, as well as MgB$_2$ and BSCCO wires
- Wide range of coil applications including generators & motors, SMES, flywheels, maglev, accelerators, insert magnets, transformers, MRI & NMR, induction heaters, bearings, etc.
- Requires sophisticated, engineered and cost-effective wires
- Requires performance in many aspects – electrical, mechanical, thermal, etc.

Adapted from B. Jensen et al.
J. Renewable & Sustainable Energy
Vol. 5, 023137 (2013)
Wire performance important to coil applications

• $I_c(B, T, \theta)$
 – engineering current density
 – field dependence
 – field orientation dependence
 – minimum $I_c(\theta)$

• Electromechanical properties (mechanical strength)
 – axial tensile (irreversible stress or strain limits)
 – transverse $(c$-axis$)$ tensile (along tape surface normal)
 – transverse $(c$-axis$)$ compressive (along tape surface normal)
 – transverse compressive (along width)
 – bending (with REBCO under compression or tension)
 – fatigue (in various stress states)

• Uniformity along length (I_c and other attributes)

• Quench stability

• Splice
 – geometry
 – resistance (resistivity)
 – mechanical strength (tensile and bending)

Standards for 2G HTS wire characterization and testing are under development
IEC Standards on Superconductivity (TC90)

(17 Publications, None on 2G HTS wire at this time)

<table>
<thead>
<tr>
<th>IEC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61788-1</td>
<td>Critical current measurement - DC critical current of Nb-Ti composite superconductors</td>
</tr>
<tr>
<td>IEC 61788-2</td>
<td>Critical current measurement - DC critical current of Nb3Sn composite superconductors</td>
</tr>
<tr>
<td>IEC 61788-3</td>
<td>Critical current measurement - DC critical current of Ag- and/or Ag alloy-sheathed Bi-2212 and Bi-2223 oxide superconductors</td>
</tr>
<tr>
<td>IEC 61788-4</td>
<td>Residual resistance ratio measurement - Residual resistance ratio of Nb-Ti composite superconductors</td>
</tr>
<tr>
<td>IEC 61788-5</td>
<td>Matrix to superconductor volume ratio measurement - Copper to superconductor volume ratio of Cu/Nb-Ti composite</td>
</tr>
<tr>
<td>IEC 61788-6</td>
<td>Mechanical properties measurement - Room temperature tensile test of Cu/Nb-Ti composite superconductors</td>
</tr>
<tr>
<td>IEC 61788-7</td>
<td>Electronic characteristic measurements - Surface resistance of superconductors at microwave frequencies</td>
</tr>
<tr>
<td>IEC 61788-8</td>
<td>AC loss measurements - Total AC loss measurement of round superconducting wires exposed to a transverse alternating magnetic field by a pickup coil method</td>
</tr>
<tr>
<td>IEC 61788-9</td>
<td>Measurements for bulk high temperature superconductors - Trapped flux density of large grain oxide superconductors</td>
</tr>
<tr>
<td>IEC 61788-10</td>
<td>Critical temperature measurement - Critical temperature of composite superconductors by a resistance method</td>
</tr>
<tr>
<td>IEC 61788-11</td>
<td>Residual resistance ratio measurement - Residual resistance ratio of Nb3Sn composite superconductors</td>
</tr>
<tr>
<td>IEC 61788-12</td>
<td>Matrix to superconductor volume ratio measurement - Copper to non-copper volume ratio of Nb3Sn composite superconducting</td>
</tr>
<tr>
<td>IEC 61788-13</td>
<td>AC loss measurements - Magnetometer methods for hysteresis loss in Cu/Nb-Ti multifilamentary composites</td>
</tr>
<tr>
<td>IEC 61788-14</td>
<td>Superconducting power devices - General requirements for characteristic tests of current leads designed for powering</td>
</tr>
<tr>
<td>IEC 61788-15</td>
<td>Electronic characteristic measurements - Intrinsic surface impedance of superconductor films at microwave frequencies</td>
</tr>
<tr>
<td>IEC 61788-16</td>
<td>Electronic characteristic measurements - Power-dependent surface resistance of superconductors at microwave frequencies</td>
</tr>
<tr>
<td>IEC 61788-17</td>
<td>Electronic characteristic measurements - Local critical current density and its distribution in large-area superconducting films</td>
</tr>
</tbody>
</table>
In-field performance - key to coil applications

$I_c(B,T)/I_c$(self field, 77K) defined as Lift Factor

Cables, FCLs, transformers

Motors, generators

SMES
Lift factor of production wire

Lift Factor (2.5T, 30K, H//ab) = 5.6
Lift Factor (2.5T, 30K, H//c) = 2.6
Magnetic field orientation dependence of $J_c (I_c)$

- Results from electronic anisotropy and structural anisotropy
- Important to coil design
- Critical current density (J_c) given by force balance when pinning force = Lorentz force
- Nanoscale defects needed especially in the direction parallel to the c-axis to enhance flux pinning
- Zr doping effective to improve J_c for $H//c$
Flux pinning enhancement via nanostructure engineering

- Techniques to introduce nanoscale defects into REBCO layer
 - Tailoring precursor composition (Zr content, RE substitution, RE:Ba:Cu ratio)
 - Optimized MOCVD deposition condition for the growth of nanostructure
 - BaZrO$_3$ and RE$_2$O$_3$ nanorods and nanoparticles
 - Controlled density, size, orientation & distribution
- Targeted wire performance for different applications (field and temperature)
- Zr doping results in significant enhancement in flux pinning for $H//c$, raising minimum I_c
- RE$_2$O$_3$ helps maintain high peak at $H//a$-b
ARPA-E REACT Program
- further improvement in in-field/low-T performance
 (Rare Earth Alternatives for Critical Technologies)

• Develop high performance, low-cost superconducting wires and coils for **wind turbine generators** that are lighter, more powerful, and more efficient

• Partnering between university, institution, and companies
 – University of Houston – project lead, wire improvements
 – SuperPower – wire manufacturer
 – NREL (National Renewable Energy Laboratory) – impact evaluation of enhanced superconducting wire on overall system performance
 – Tai Yang Research Company – coil fabrication and test
 – TECO Westinghouse Motor Company – device design

• Goal: four-fold improvement in lift factor (2.5T, 30K)
• Project started in January 2012
• Program period: 3 years
• Budget: $3.1 million
I_c uniformity along length
(four-probe transport measurement)
I_c uniformity along length (TapeStar)

Position (cm) (on a 12 mm wide wire)

- Magnetic, non-contact measurement
- High spacial resolution, high speed, reel-to-reel
- Monitoring I_c at multiple production points after MOCVD
- Capability of quantitative 2D uniformity inspection
Mechanical strength of superconducting wires

- Longitudinal (axial) direction – static tensile, cyclic tensile
- Transverse direction (perpendicular to the surfaces) - static tensile, static compressive, cyclic tensile
- Transverse direction (parallel to the surfaces) – static compressive
- Peeling – complex and concentrated stress
- Bending – REBCO under tensile or compressive
Tensile strength of 2G HTS wire

• Stress-strain relationship under axial tensile load (at room temperature or operating temperature)
 - Basic mechanical behavior
• Electro-mechanical performance: effect of stress (strain) on I_c
 - I_c measurement after applying stress at RT, compared with zero-stress critical current, $I_c(0)$
 - I_c measurement while applying stress at a cryogenic temperature, e.g., 77K, compared with zero-stress critical current, $I_c(0)$
 - I_c measurement after applying stress at a cryogenic temperature, e.g., 77K
 - Increase stress level while applying a constant current, e.g., at 95% of the zero-stress critical current, $I_c(0)$
• Tensile stress (strain) limit: critical stress (strain) above which I_c drops below 95% of the zero-stress critical current, $I_c(0)$
• Tensile strength predominantly determined by the Hastelloy substrate, but affected by the copper stabilizer thickness
Tensile strength at room temperature

Effect of copper stabilizer thickness on stress-strain relationship at tension
Tensile strength - effect of stress on I_c

Relative I_c vs. room temperature tensile stress for a 12mm wide wire with 100μm Cu stabilizer
Tensile strength at 4K and 77K
- Effect of copper stabilizer thickness

![Graph showing tensile strength at 4K and 77K](image-url)

4 K and 77 K data from NHMFL

Copper thickness

- 40 µm
- 60 µm
- 100 µm

stress (MPa)

strain
Bending test to determine minimum bending diameter

Relative I_c vs. bending diameter for a 12mm wide wire with 100μm Cu

Compression

Tension

77K
Transverse compression perpendicular to surface

- Compression at room temperature, I_c tested at 77 K
- No measurable degradation in critical current
Transverse (c-axis) tensile strength

- Stress builds up during coil winding, cooling, operation (mechanical, thermal, and magnetic) with tensile components perpendicular to wire surface
- Transverse (c-axis) tensile stress (more complicatedly, the peel stress, or cleavage stress) could cause wire delamination (either cohesive or adhesive)
- Various testing methods have been developed for the evaluation of wire strength against delamination
 - Anvil Test (NIST, SP, SRL-ISTEC, NHMFL w/\(I_c\))
 - Pin-Pull Test (SP)
 - Stud-Pull Test (Fujikura)
 - Cleavage Test (RIKEN w/\(I_c\))
 - Peel Test (SP)
 - Four Points Bending Test (SRL-ISTEC)
 - Double Cantilever Beam (DCB) Test (Kyoto University)
- Delamination behavior affected by mechanical properties of individual layers and the interfacial adhesion strength between adjacent layers
Peel strength – strength against delamination

- Peel test at various peeling angles (change in stress state at peeling tip), including 90°, 180° peel, or T-peel
- Peeling load vs displacement curve used for determination of peel strength (N/cm)
- Peeled surfaces analyzed for identifying weakest layer or interface
- Wire processing modification/optimization to achieve higher peel strength

![Peel test diagram](image)

![Graph](image)
Weakest layer (interface) varies with stress state

- 90° peel test
- 180° peel test

Optical images of peeled surfaces
Peel strength – strength against delamination

- Relationship observed between peel strength measured at different peeling angles, e.g., \(ps(90°) = 0.56ps(T) + 0.3 \)
Reliable splices – low resistance and high strength

- Splicing always required by real applications
- Splice properties are important conductor performance and have influences on dielectrics and cryogenics as well
- Low resistance and high electromechanical strength are basic requirements

- Contact resistivity at REBCO/Ag interface has an effect on splice resistance
- Splices fabricated via soldering at a temperature below 250°C
- Soldering temperature, pressure, duration time are important parameters
- \(I_c \) retained across the splices with no degradation through soldering
- Splice resistance \(R \leq 20 \, \text{n}\Omega \) and minimum bending diameter \(d \approx 25 \, \text{mm} \), for the lap joint geometry with a 10cm overlap length
- Splicing per customer request and each splice inspected
Splice resistance vs. overlap length

![Diagram](image_url)
Making reliable coils using 2G HTS wire
- coil winding techniques investigated

Epoxy
- Epoxy has strong effect on coil performance

Support
- Thermal coefficient consideration

Former Release
- Improvement found in coil stability

Insulation
- Alternative materials – stress relaxation & cooling

Co-winding
- Improved integrity and stability

Winding Tension
- Compactness and integrity

Mitigate stress and improve integrity & stability
Metal strip co-winding for high field magnet has been effectively used by many groups

- 1995, MIT/Sumitomo, SS co-winding, 1G HTS Bi2223
 - Generation of 24.0 T at 4.2 K and 23.4 T at 27 K with a high-temperature superconductor coil in a 22.54 T background field
 • \textit{APL}, 67, 1923, 1995

- 2003, NHMFL/OST, co-wind SS (28 \textmu m), 1G HTS Bi2212
 - Development of a 5T HTS Insert Magnet as Part of 25T Class Magnets

- 2011, MIT/FBML, co-wind Cu (0.2 mm with one side polyester) for REBCO, co-wind SS (50 um) for Bi-2223
 - A 1.3 GHz LTS/HTS NMR magnet – a progress report

- 2011, BNL, co-wind SS or Kapton (25 \textmu m), 2G HTS REBCO
 - High field HTS R&D solenoid for Muon Collider

- 2012, NHMFL, plain co-wind SS, 2G HTS REBCO
 - Design of a Superconducting 32 T magnet with REBCO high field coils
SS co-winding and partial epoxy winding

- **SS co-winding benefits**
 - Mechanical reinforcement
 - Less contained epoxy, improvement w/r to cool-down
 - Insulation may become stabilizer during transient/local quench
 - Increased thermal conductivity, compared to conventional insulation

- **SS co-winding impacts**
 - Ramping loss (low ramping rate, HTS larger thermal margin)
 - Current re-distribution during quench (may need modeling for large magnet)
 - Impact on current density

- **Partial epoxy impregnation offers positive results**
 - Side applied, epoxy partially penetrated into turns, 30-40% of epoxy coverage for 4 mm wide wire
 - Seals the coil, protects it from moisture
 - Mechanically fixes turn-turn and layer-layer
Summary

- 2G HTS wire provides advantages with higher current density and superior in-field performance for various coil applications
- SuperPower’s 2G HTS wire production grows steadily, meeting performance and volume requirements from different customers
- In-field performance (lift factor) and mechanical strength are among the key properties important to coil applications and being further improved with continuous R&D efforts
- Government-funded application development projects (e.g., SMES, FCL Transformer, and Wind Turbine Generator) are being pursued to demonstrate the technology and speed the adoption

For more information: http://www.superpower-inc.com
For questions: yzhang@superpower-inc.com